Obstruction Theory for Objects in Abelian and Derived Categories
نویسنده
چکیده
In this paper we develop the obstruction theory for lifting complexes, up to quasi-isomorphism, to derived categories of flat nilpotent deformations of abelian categories. As a particular case we also obtain the corresponding obstruction theory for lifting of objects in terms of Yoneda Extgroups. In appendix we prove the existence of miniversal derived deformations of complexes.
منابع مشابه
Gorenstein projective objects in Abelian categories
Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...
متن کاملTORSION CLASSES AND t-STRUCTURES IN HIGHER HOMOLOGICAL ALGEBRA
Higher homological algebra was introduced by Iyama. It is also known as n-homological algebra where n > 2 is a fixed integer, and it deals with n-cluster tilting subcategories of abelian categories. All short exact sequences in such a subcategory are split, but it has nice exact sequences with n + 2 objects. This was recently formalised by Jasso in his theory of n-abelian categories. There is a...
متن کاملIntroduction to Abelian and Derived Categories
This is an account of three 1-hour lectures given at the Instructional Conference on Representation Theory of Algebraic Groups and Related Finite Groups, Isaac Newton Institute, Cambridge, 6–11 January 1997. In section 1, we define abelian categories following Grothendieck [12]. We then characterize module categories among abelian categories. Finally we sketch a proof of Mitchell’s full embeddi...
متن کاملEquivalences between cluster categories
Tilting theory in cluster categories of hereditary algebras has been developed in [BMRRT] and [BMR]. These results are generalized to cluster categories of hereditary abelian categories. Furthermore, for any tilting object T in a hereditary abelian category H, we verify that the tilting functor HomH(T,−) induces a triangle equivalence from the cluster category C(H) to the cluster category C(A),...
متن کاملHomology and homotopy in semi-abelian categories
The theory of abelian categories proved very useful, providing an ax-iomatic framework for homology and cohomology of modules over a ring (in particular, abelian groups) [5]. A similar framework has been lacking for non-abelian (co)homology, the subject of which includes the categories of groups and Lie algebras etc. The point of my thesis is that semi-abelian categories (in the sense of Janeli...
متن کامل